Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetologia ; 48(11): 2365-75, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16205884

RESUMO

AIMS/HYPOTHESIS: Intake of n-3 polyunsaturated fatty acids reduces adipose tissue mass, preferentially in the abdomen. The more pronounced effect of marine-derived eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids on adiposity, compared with their precursor alpha-linolenic acid, may be mediated by changes in gene expression and metabolism in white fat. METHODS: The effects of EPA/DHA concentrate (6% EPA, 51% DHA) admixed to form two types of high-fat diet were studied in C57BL/6J mice. Oligonucleotide microarrays, cDNA PCR subtraction and quantitative real-time RT-PCR were used to characterise gene expression. Mitochondrial proteins were quantified using immunoblots. Fatty acid oxidation and synthesis were measured in adipose tissue fragments. RESULTS: Expression screens revealed upregulation of genes for mitochondrial proteins, predominantly in epididymal fat when EPA/DHA concentrate was admixed to a semisynthetic high-fat diet rich in alpha-linolenic acid. This was associated with a three-fold stimulation of the expression of genes encoding regulatory factors for mitochondrial biogenesis and oxidative metabolism (peroxisome proliferator-activated receptor gamma coactivator 1 alpha [Ppargc1a, also known as Pgc1alpha] and nuclear respiratory factor-1 [Nrf1] respectively). Expression of genes for carnitine palmitoyltransferase 1A and fatty acid oxidation was increased in epididymal but not subcutaneous fat. In the former depot, lipogenesis was depressed. Similar changes in adipose gene expression were detected after replacement of as little as 15% of lipids in the composite high-fat diet with EPA/DHA concentrate, while the development of obesity was reduced. The expression of Ppargc1a and Nrf1 was also stimulated by n-3 polyunsaturated fatty acids in 3T3-L1 cells. CONCLUSIONS/INTERPRETATION: The anti-adipogenic effect of EPA/DHA may involve a metabolic switch in adipocytes that includes enhancement of beta-oxidation and upregulation of mitochondrial biogenesis.


Assuntos
Tecido Adiposo/metabolismo , Ácidos Graxos Insaturados/farmacologia , Mitocôndrias/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Animais , Carnitina O-Palmitoiltransferase/efeitos dos fármacos , Carnitina O-Palmitoiltransferase/genética , Células Cultivadas , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Epididimo/efeitos dos fármacos , Epididimo/metabolismo , Ácidos Graxos Insaturados/isolamento & purificação , Ácidos Graxos Insaturados/metabolismo , Óleos de Peixe/química , Regulação da Expressão Gênica/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Fator 1 Relacionado a NF-E2/efeitos dos fármacos , Fator 1 Relacionado a NF-E2/genética , Obesidade/prevenção & controle , Oxirredução , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Gordura Subcutânea/efeitos dos fármacos , Gordura Subcutânea/metabolismo , Transativadores/efeitos dos fármacos , Transativadores/genética , Fatores de Transcrição , Ácido alfa-Linolênico/farmacologia
2.
Int J Obes Relat Metab Disord ; 28 Suppl 4: S38-44, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15592485

RESUMO

As indicated by in vitro studies, both lipogenesis and lipolysis in adipocytes depend on the cellular ATP levels. Ectopic expression of mitochondrial uncoupling protein 1 (UCP1) in the white adipose tissue of the aP2-Ucp1 transgenic mice reduced obesity induced by genetic or dietary manipulations. Furthermore, respiratory uncoupling lowered the cellular energy charge in adipocytes, while the synthesis of fatty acids (FA) was inhibited and their oxidation increased. Importantly, the complex metabolic changes triggered by ectopic UCP1 were associated with the activation of AMP-activated protein kinase (AMPK), a metabolic master switch, in adipocytes. Effects of several typical treatments that reduce adiposity, such as administration of leptin, beta-adrenoceptor agonists, bezafibrate, dietary n-3 polyunsaturated FA or fasting, can be compared with a phenotype of the aP2-Ucp1 mice. These situations generally lead to the upregulation of mitochondrial UCPs and suppression of the cellular energy charge and FA synthesis in adipocytes. On the other hand, FA oxidation is increased. Moreover, it has been shown that AMPK in adipocytes can be activated by adipocyte-derived hormones leptin and adiponectin, and also by insulin-sensitizes thiazolidinediones. Thus, it is evident that metabolism of adipose tissue itself is important for the control of body fat content and that the cellular energy charge and AMPK are involved in the control of lipid metabolism in adipocytes. The reciprocal link between synthesis and oxidation of FA in adipocytes represents a prospective target for the new treatment strategies aimed at reducing obesity.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Proteínas de Transporte/metabolismo , Coristoma/metabolismo , Metabolismo Energético/fisiologia , Humanos , Canais Iônicos , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Modelos Biológicos , Obesidade/metabolismo , Proteína Desacopladora 1
3.
Physiol Res ; 53 Suppl 1: S225-32, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15119952

RESUMO

Body fat content is controlled, at least in part, by energy charge of adipocytes. In vitro studies indicated that lipogenesis as well as lipolysis depend on cellular ATP levels. Respiratory uncoupling may, through the depression of ATP synthesis, control lipid metabolism of adipose cells. Expression of some uncoupling proteins (UCP2 and UCP5) as well as other protonophoric transporters can be detected in the adipose tissue. Expression of other UCPs (UCP1 and UCP3) can be induced by pharmacological treatments that reduce adiposity. A negative correlation between the accumulation of fat and the expression of UCP2 in adipocytes was also found. Ectopic expression of UCP1 in the white fat of aP2-Ucp1 transgenic mice mitigated obesity induced by genetic or dietary factors. In these mice, changes in lipid metabolism of adipocytes were associated with the depression of intracellular energy charge. Recent data show that AMP-activated protein kinase may be involved in the complex changes elicited by respiratory uncoupling in adipocytes. Changes in energy metabolism of adipose tissue may mediate effects of treatments directed against adiposity, dyslipidemia, and insulin resistance.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Metabolismo Energético , Metabolismo dos Lipídeos , Obesidade/fisiopatologia , Proteínas Quinases Ativadas por AMP , Animais , Proteínas de Transporte/metabolismo , Canais Iônicos , Proteínas de Membrana/metabolismo , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Síndrome Metabólica/prevenção & controle , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais , Complexos Multienzimáticos/metabolismo , Obesidade/metabolismo , Obesidade/prevenção & controle , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Desacopladora 1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...